Calculates and helps interpret variable importance for mrIML models.
Usage
mrvip(
yhats = NULL,
mrBootstrap_obj = NULL,
X = X,
X1 = NULL,
Y = Y,
mode = "classification",
threshold = 0.1,
global_top_var = 10,
local_top_var = 5,
taxa = NULL,
ModelPerf = ModelPerf,
plot.pca = T
)
Arguments
- yhats
A list of model predictions.
- mrBootstrap_obj
The object containing model bootstrapping results.
- X
The predictor data.
- X1
A
dataframe
extra predictor set used in each model. For the MrIML Joint species distribution model (JSDM) this is just a copy of the response data.- Y
The response data.
- mode
character
'classification' or 'regression' i.e., is the generative model a regression or classification?- threshold
The threshold for model performance (AUC) below which variables are filtered (default: 0.1).
- global_top_var
The number of top global variables to display (default: 10).
- local_top_var
The number of top local variables for each response to display (default: 5).
- ModelPerf
A list containing model performance metrics for each response variable.